本文分类:news发布日期:2025/10/31 15:52:26
打赏

相关文章

扩展欧几里得 exgcd

扩展欧几里得 exgcd 求解形如 \(a\cdot x + b\cdot y = \gcd(a,b)\) 的不定方程的任意一组解。 int exgcd(int a, int b, int &x, int &y) {if (!b) {x = 1, y = 0;return a;}int d = exgcd(b, a % b, y, x);y…

离散对数 bsgs 与 exbsgs

离散对数 bsgs 与 exbsgs 以 \(\mathcal O(\sqrt {P})\) 的复杂度求解 \(a^x \equiv b(\bmod P)\) 。其中标准 \(\tt BSGS\) 算法不能计算 \(a\) 与 \(MOD\) 互质的情况,而 exbsgs 则可以。 namespace BSGS { LL a, …

防爆模乘

防爆模乘 借助浮点数实现 以 \(\mathcal O(1)\) 计算 \(a\cdot b\bmod p\) ,由于不取模,常数比 int128 法小很多。其中 \(1 \le n, k, p \le 10^{18}\) 。 int mul(int a, int b, int m) {int r = a * b - m * (int)…

欧拉筛(线性筛)

欧拉筛(线性筛) 时间复杂度为 \(\mathcal{O}(N\log\log N)\) 。 vector<int> prime; // 这里储存筛出来的全部质数 auto euler_Prime = [&](int n) -> void {vector<int> v(n + 1);for (int i = …

常见数列

常见数列 调和级数 满足调和级数 \(\mathcal O\left( \dfrac{N}{1} +\dfrac{N}{2}+\dfrac{N}{3}+\dots + \dfrac{N}{N} \right)\),可以用 $ \approx N\ln N$ 来拟合,但是会略小,误差量级在 \(10\%\) 左右。本地可以…

【LTDC】LTDC 简介

前言 此篇文章仅作笔记分享,内容来源为:【正点原子】全是干货 | 手把手教你学STM32的LTDC这一节课目的就是了解一下 LTDC 的各种特点,方便后面学习。 LTDC 简介控制器框图信号线 注意不同芯片会有不同的引脚对应。 …

手机版浏览

扫一扫体验

微信公众账号

微信扫一扫加关注

返回
顶部